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The concentration distribution of massive dilute species (e.g. aerosols, heavy vapours,
etc.) carried in a gas stream in non-isothermal boundary layers is studied in the large-
Schmidt-number limit, Sc( 1, including the cross-mass-transport by thermal diffusion
(Ludwig–Soret effect). In self-similar laminar boundary layers, the mass fraction
distribution of the dilute species is governed by a second-order ordinary differential
equation whose solution becomes a singular perturbation problem when Sc( 1.
Depending on the sign of the temperature gradient, the solutions exhibit different
qualitative behaviour. First, when the thermal diffusion transport is directed toward
the wall, the boundary layer can be divided into two separated regions: an outer region
characterized by the cooperation of advection and thermal diffusion and an inner
region in the vicinity of the wall, where Brownian diffusion accommodates the mass
fraction to the value required by the boundary condition at the wall. Secondly, when
the thermal diffusion transport is directed away from the wall, thus competing with the
advective transport, both effects balance each other at some intermediate value of the
similarity variable and a thin intermediate diffusive layer separating two outer regions
should be considered around this location. The character of the outer solutions
changes sharply across this thin layer, which corresponds to a second-order regular
turning point of the differential mass transport equation. In the outer zone from the
inner layer down to the wall, exponentially small terms must be considered to account
for the diffusive leakage of the massive species. In the inner zone, the equation is solved
in terms of the Whittaker function and the whole mass fraction distribution is
determined by matching with the outer solutions. The distinguished limit of Brownian
diffusion with a weak thermal diffusion is also analysed and shown to match the two
cases mentioned above.

1. Introduction

Ludwig, in 1856, was pioneering in discussing the phenomenon of mass thermal
diffusion in liquid mixtures. Later on, and contemporary with the experiments
conducted by Soret in liquid solutions subjected to a temperature gradient, the same
phenomenon was first observed in gases by Tyndall (1870) and then by Aitken (1884)
who reported the appearance of a dark zone surrounding lightened hot particles
immersed in a dusty gas (for these early references see the monographs by de Groot
1945; or de Groot & Mazur 1984). The formation of this so called dust-free layer was
duly related to the radiometer forces on aerosols (Rosenblatt & La Mer 1946), namely
to the thermophoresis, which some time later was recognized as the particle limit of the
thermal diffusion predicted in gaseous mixtures by the Enskog–Chapman solution to
the Boltzmann kinetic equation (Mason & Chapman 1962). In this paper the
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discussion will be centred on the dynamical behaviour of a dilute species, whose size
lies on the imprecise border which separates small particles and large molecules. Thus,
the terms thermophoresis, thermal diffusion and Ludwig–Soret transport will be used
interchangeably to denote the cross-transport of mass induced by a thermal gradient and
Brownian or Fickian diffusion will accordingly denote the direct diffusive mass
transport due to the concentration gradients.

The importance of mass transport by thermal (Ludwig–Soret) diffusion in a variety
of processes of physical and technological interest is well recognized today. The leading
role played by this transport in the onset of some convective and interfacial instabilities
has been exhaustively studied in fluid mixture layers subjected to a vertical temperature
gradient (see for instance Garcı!a-Ybarra & Velarde 1979, 1987; Castillo & Velarde
1982). The alteration of advective mass transport rates induced by thermal diffusion in
non-isothermal flows has attracted special attention due to the implications for chemical
vapour deposition, vapour condensation, combustion, aerosols capture}rejection by
cold}hot plates, etc. (Rosner 1980, 1990; Rosner et al. 1992). In the combustion field,
where strong and simultaneous gradients of mass and heat coexist, Ludwig–Soret
transport can rarely be neglected. In fact, this has proven to be a first-order effect in
a large number of phenomena related to flames (Garcı!a-Ybarra 1991) : in premixed
flame instability (Garcı!a-Ybarra, Nicoli & Clavin 1984), species concentration
distribution (Fristrom & Monchick 1988), ignition by hot boundaries (Garcı!a-Ybarra
& Castillo 1991a, b ; Garcı!a-Ybarra & Trevin4 o 1994), combustion-generated particle
distribution (Castillo & Garcı!a-Ybarra 1991; Rosner, Mackowski & Garcı!a-Ybarra
1991; Gomez & Rosner 1993), etc. In vapour deposition problems, the influence of
Ludwig–Soret transport in boundary layers has been considered by Castillo & Rosner
(1988, 1989a, b), and in the crystal growth of high-molecular-weight compounds from
a vapour phase by Castillo, Garcı!a-Ybarra & Rosner (1992). Finally, with regard to
experimental techniques and practical applications, as early as 1884 Aitken had built
an air filter based on the thermophoretic capture of particles and proposed to use this
phenomenon for particle removal from polluted environments. Since then, different
thermophoretic precipitators have been designed (see, for instance, the recent design by
Tsai & Lu 1995) which show great efficiency in collecting particles in the submicron
range. In fact, some years ago, Eisner & Rosner (1985, 1986) showed that the temporal
evolution of a thermocouple response induced by the thermophoretic capture of soot
particles on the thermocouple bead could be used to measure the soot volume fraction
in a soot-laden gas stream. Along the same lines, the thermophoretic sampling of soot
particles reported by Dobbins & Megaridis (1987) is a technique widely used today
(Ito, Fujita & Ito 1994). Also, in LDV measurements carried out in hot gas streams the
particle and gas velocities may be substantially different due to the particle
thermophoretical drift ; this problem was clearly revealed by Talbot et al. (1980) and
has been recently stressed by Sung, Law & Axelbaum (1994) in flame-related
measurements.

Besides the problem of thermophoretical deposition in ducts (Walker, Homsy &
Geyling 1979; Stratmann, Otto & Fissan 1994), the self-similar boundary layer with
simultaneous heat and mass transfer constitutes a model problem of considerable
interest in many of the practical situations mentioned above, where external flows over
bluff bodies occur. Following the paper by Goren (1977) many works have been
devoted to the theoretical study of the aerosol particle concentration profile in thermal
boundary layers, although only partial results are known to date. Thermophoretically
enhanced deposition of particles on cold surfaces was considered by Batchelor & Shen
(1985) and Go$ koglu & Rosner (1986a) among others, whereas thermophoretic
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suppression of particle deposition on hot surfaces has been experimentally studied by
Talbot et al. (1980) and theoretically by Go$ koglu & Rosner (1986b), Park & Rosner
(1989), Stratmann et al. (1988) and Friedlander, Ferna! ndez de la Mora & Go$ koglu
(1988).

When thermal diffusion is the prevailing mass transport mechanism (with Brownian
diffusion playing a minor role), as in the case of a heavy species diluted in a light carrier
gas, mass diffusive fluxes induced by thermal gradients appear as soon as temperature
differences are appreciable in the gas mixture. Then, the concentration boundary layer
thickness becomes equal to the thermal boundary layer thickness and the influence of
Brownian diffusion is restricted to a thinner sublayer. In the following analysis, we
show that this Brownian sublayer may be located either adjacent to the immersed body
or well inside the thermal boundary layer (i.e. detached from the solid surface),
depending on the thermal gradient and flow field. The aim of the present work is to
provide a rather complete description of the self-similar boundary layer structure and
mass transfer rates in the asymptotic limit of high Schmidt numbers. This will appear
as a singular limit, which requires different expansions for the mass fraction
distribution in the two kinds of differentiated regions in which the whole thermal
boundary layer can be decomposed; that is, in the regions where Brownian diffusion
plays a minor role (thermophoretically dominated zones) and in the Brownian
sublayer. Thus, the inverse of the Schmidt number (Sc−") will be taken as the
perturbation parameter to perform asymptotic expansions valid in the thermophoretic
outer zones. Those will be matched with the appropriate expansions in the Brownian
inner zone.

The paper is organized as follows. In §2 the contribution of thermal diffusion to the
complete diffusive mass flux in a binary gas mixture is discussed. In §3 the governing
equations for self-similar boundary layers leading to Falkner–Skan-type solutions are
presented, and the asymptotic expansions are outlined. Sections 4 and 5 are devoted to
the solution of the cases of mass transfer towards a cold and a hot wall respectively.
Section 6 analyses the limit of Brownian diffusion in the presence of small temperature
differences, showing the influence of a small thermophoretic transport on the structure
of the boundary layer. Section 7 contains a discussion of the above results and general
conclusions. Finally, the Appendix addresses the determination of the thermal
diffusion factor in diluted binary mixtures with the results used in the numerical
evaluations presented in §2.

2. The diffusive mass flux

In a fluid binary mixture consisting of a carrier component and a dilute species, the
diffusive mass flux of the dilute species, j

m
, in the absence of strong pressure gradients,

is given by (de Groot & Mazur 1984; Landau & Lifshitz 1987)

j
m

¯®ρD¡ω®ρα
T

Dω¡ lnT, (2.1)

where ρ is the fluid density, ω is the dilute-species mass fraction, T is the local absolute
temperature, D is the binary diffusion coefficient and α

T
is the thermal diffusion factor.

The first term on the right-hand side of (2.1) stands for the direct Fickian diffusion flux
and the second term stands for the thermal diffusion (Ludwig–Soret) cross-effect. Note
that a second-order term in ω has been neglected in (2.1) because of the dilution
assumption (a discussion of the ‘non-diluteness ’ effects is available in Rosner & Park
1988). Owing to this dilution we can also neglect (in the corresponding heat diffusion
flux) the reciprocal cross-transport of heat due to the concentration gradient (Dufour
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effect) with respect to the direct Fourier transport because it is a first-order correction
in ω. However, in (2.1) the leading contribution of the cross-mass-transport induced by
a thermal gradient must be retained because its relative magnitude with respect to the
Fickian transport is given by the thermal diffusion factor α

T
. Although in liquid

mixtures Ludwig–Soret transport often represents a rather small effect the coefficient
α
T

may take very large values in gas mixtures when there exists a strong disparity
between the molecular masses of both species. When the dilute species is the massive
component (as in the case of very heavy molecules or small particles in a gas) the
Schmidt number, Sc3 ν}D (3momentum diffusivity over mass diffusivity) also takes
very large values owing to the low diffusion coefficient. However, the dimensionless
group α3α

T
}Sc can remain positive and of order unity. Under these circumstances,

Ludwig–Soret transport overwhelms Fickian diffusion and induces a mass flux down
the temperature gradient ; that is, toward the cooler regions.

When the diluted species are just single molecules, the value of the thermal diffusion
factor α

T
can be predicted via the gas kinetic theory. Furthermore, as is shown in the

Appendix, these predictions match asymptotically (in the limit of very massive dilute
molecules) with the results expected for small particles suspended in a gas (in the limit
of very large particle Knudsen numbers).

Values of the thermal diffusion strength α obtained from the gas kinetic theory,
equation (A 1), are depicted in figure 1 as a function of the species radii ratio, r

"
}r

!
(3dilute species radius over carrier-gas molecular radius), for hard spheres and elastic
collisions (a¯ 0, and thus A*¯B*¯C*¯ 1). In the limit of very light dilute
molecules the thermal diffusion strength diverges to minus infinity since α

T
is negative

and the Schmidt number vanishes. In the opposite limit of a relatively massive dilute
species, both α

T
and Sc take large values but their ratio α tends asymptotically to a

constant value which depends on the interaction potential between the two species. The
parameter a (fraction of diffusive inter-species molecular collisions) accounts for this
dependence. It becomes clear from figure 1 that there exists a wide range of radii ratios
where Fickian diffusion is very weak (the Schmidt number is large) and thermal
diffusion prevails as the main diffusive transport mechanism when thermal gradients
are present in the gas mixture.

The previous results cannot be directly applied to the case of small particles diluted
in a gas. When the particle dimensions are smaller than (or of the order of) the gas-
molecule mean free path, l, equation (A 6) provides an interpolation formula which has
been shown to fit most of the particle size range (Talbot et al. 1980). A composite
expression for the thermal diffusion strength α, valid for any radii ratio, may be
obtained by adding (A 1) and (A 6) and subtracting the common part (the result for
the dusty gas, given by (A 3)). To illustrate the behaviour predicted by this composite
expression, we present some characteristic results in figure 2, where we have taken
A*¯B*¯ 1 and C* given by (A 4), together with the assumption that the molecules
of every species are hard spheres with equal densities. The solid lines correspond to
a¯ 1 (purely diffuse collisions between unequal species) whereas the broken lines
account for the opposite limit of purely specular collisions (a¯ 0). For the smaller
particle sizes the results of the gas kinetic theory are recovered, being independent of
the total pressure. On the other hand, the thermal diffusion strength decays as l}r

"
decreases for very large particles diluted in a gas. The larger the pressure
(correspondingly, the smaller the carrier-gas mean free path) the smaller the particles
affected by this decay. For typical atmospheric pressures (l}r

!
E 10$) the thermal

diffusion strength remains almost constant for a range of variation of particle radii of
about three decades (from the nanometer to the micron, roughly speaking). Similar
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results were discussed by Rosner & Ferna! ndez de la Mora (1982). These predictions
can be compared with the experimental results collected by Talbot et al. (1980) in their
figure 7.

Therefore, the kinetic theory formula (equation (A 1)) can be used to estimate the
values of α

T
and Sc in the range of sizes on which we will focus our attention in this

work. That is, from large massive molecules to small particles where Fickian diffusion
plays a minor role but inertia is still unimportant, i.e. the accelerations in the flow are
soft enough to keep the particle Stokes number very low (for the opposite case where
inertia is a dominant effect see Ferna! ndez de la Mora & Rosner 1981 and also
Konstandopoulos & Rosner 1995a, b). Then, under these constraints, thermal diffusion
remains as the main effect responsible for the departures of the dilute molecule (or
particle) trajectories from the gas streamlines.
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3. Governing equations and high-Schmidt-number asymptotics

Let us consider the two-dimensional fluid flow around a solid wedge (figure 3), where
a fully developed laminar boundary layer is generated by a gas stream, with a
prevailing mainstream temperature T¢, flowing steadily on a rigid surface held at a
constant temperature T

w
(subscripts ¢ and w refer to values on the outer edge of the

boundary layer and at the rigid wall, respectively). Let x and y denote the streamwise
and normal coordinates respectively. The inviscid (potential) flow which corresponds
to the neighbourhood of the forward stagnation point on a wedge with included angle
equal to πβ (where β¯ 2m}(m1)) has a streamwise velocity component of the form

u¢(x)¯ cxm, (3.1)

where c is a constant. As is well known, both the two-dimensional stagnation-region
flow and the boundary layer on a flat plate at zero incidence constitute particular cases
of wedge flows, the former for β¯ 1 (i.e. m¯ 1), the latter for β¯ 0 (i.e. m¯ 0). On
the other hand, the case β¯ "

#
(m¯ "

$
) can easily be transformed into the flow near an

axisymmetric stagnation point (Schlichting 1968, p. 150).
When the product of the fluid density, ρ, times the dynamic viscosity, µ, is assumed

to be a constant throughout the boundary layer (that is, ρµ¯ ρ¢ µ¢), the similarity
variable η leading to a self-similar stationary solution is obtained via the
Howarth–Dorodnitysn transformation:

η¯ 9(m1) ρ¢ u¢

2µ¢ x :"/#&y

!

(ρ}ρ¢) dy. (3.2)

The longitudinal and transverse velocity components, �¯ (u, �), derive from the
streamfunction Φ(x, y) :

ρu¯ ρ¢

¥Φ
¥y

and ρ�¯®ρ¢

¥Φ
¥x

, (3.3)

with

Φ(x, y)3 9 2xµ¢ u¢

(m1) ρ¢
:"/# f(η) ; (3.4)

f(η) is the dimensionless Blasius function which satisfies the differential equation

f¨ff§β[Θ®( f «)#]¯ 0 (3.5)

together with the boundary conditions

f «U 1 when ηU¢,

f¯ f «¯ 0 at η¯ 0.

5

6

7

8

(3.6)

In the above relations, primes denote derivatives with respect to η. We have assumed
that the gas density satisfies the equation of state for a perfect gas and have also
introduced the dimensionless temperature Θ(η)3T}T¢, which is considered self-
similar.

When the Prandtl number Pr¯ ν}χ (ratio of gas kinematic viscosity, ν3µ}ρ, to
thermal diffusivity, χ) is taken as constant and equal to the mainstream value, the
temperature profile inside the boundary layer is governed by the following differential
equation:

Θ§Pr fΘ«¯ 0, (3.7)
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F 3. Sketch of the geometry corresponding to the two-dimensional flow of a gas around a wedge
of opening angle πβ with a potential external flow given by u¢(x)¯ cxm, with β¯ 2m}(m1).

where Θ has to satisfy the boundary conditions

ΘU 1 when η U¢,

Θ¯Θ
w

3T
w
}T¢ at η¯ 0.

5

6

7

8

(3.8)

The solution is formally given by the Polhausen profile

Θ(η)¯Θ
w
(1®Θ

w
)&

η

!

θ(ηh ) dηh 5&
¢

!

θ(ηh ) dηh , (3.9)

where we have defined the function

θ(η)3 exp 9®Pr&
η

!

f(ηh ) dηh : (3.10)

and ηh is a dummy integration variable.
Assuming that the mass diffusive flux is given by (2.1) and self-similarity for the

normalized mass fraction distribution of the dilute species, Ψ(η)3ω}ω¢, the
governing boundary layer equation for Ψ becomes

1

Sc
Ψ§fΨ«α

d

dη 0
Ψ

Θ
Θ«1¯ 0, (3.11)

where the Schmidt number, Sc3 ν}D, has been assumed to be temperature
independent. In (3.11), the first term corresponds to the Fickian diffusion, the second
term to the advective transport and the third term comes from the thermal diffusion
contribution to the mass flux.

Ψ must satisfy the boundary condition at the mainstream

ΨU 1 when ηU¢ (3.12)

together with another boundary condition at the wall. In general, when there is a mass
flux to the wall, a deposit builds up on the surface and the boundary condition
accounts for the required condition on this deposit. Usually, the local mass flux to the
deposit should be proportional to the departure of the mass fraction from its
equilibrium value. But Ψ is assume self-similar whereas, in general, the mass flux to the
wall (®j

m
[n) (with n3 (0, 1) being the outward unit vector to the wall) is not self-

similar and varies along the streamwise direction as x(m−")/#. So, only for m¯ 1 (the
stagnation-point flow) is this proportionality condition compatible with a self-similar
structure of the concentration boundary layer. Nevertheless, we will take a single
uniform expression for the boundary condition at the wall which (while retaining the
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similarity of the problem) serves to account for most of the situations encountered in
practice. That is

J¯C
S
(Ψ

w
®Ψ eq), (3.13)

where Ψ eq stands for the value associated with the equilibrium partial pressure at the
prevailing surface temperature, C

S
is a kind of sticking coefficient and J is the self-

similar part of the dimensionless mass flux to the wall, given by

J3
(®j

m
[n)

w

ρ¢ ω¢ u¢
9 2ρ¢ u¢ x

(m1)µ¢
:"/#¯

1

Sc
Ψ !

w
α

Ψ
w

Θ
w

Θ!
w
. (3.14)

Therefore, although (3.13) retains the self-similarity of the problem, only for m¯ 1
does it state the proportionality between the departure of the mass fraction from its
equilibrium value and the actual local mass flux at the wall. For a different value of m,
(3.13) is just a formal condition which has a physical sense only in the limits C

S
¯ 0

(vanishing flux) and C
S
U¢ (perfect sticking). For uniformity in the mathematical

treatment of the problem we will retain (3.13) as a general boundary condition for any
value of m.

When the dilute species is an aerosol forming a condensed deposit on the surface,
C

S
takes very large values, whereas Ψ eqE 0; then, the boundary condition (3.13)

corresponds to a vanishing mass fraction at the wall, Ψ
w

¯ 0. On the other hand, for
a dilute mixture of gases C

S
becomes negligible and the boundary condition (3.13)

implies that the mass flux to the wall must vanish.
Equation (3.11) can be written in the form

Sc−"Ψ§G(η)Ψ«H(η)Ψ¯ 0, (3.15)
with the definitions

G(η)3 fα(lnΘ)«, (3.16)

H(η)3α(lnΘ)§. (3.17)

In the following, equation (3.15) will be analysed by using Sc−" as a smallness
parameter. Thus, we will look for solutions in the form of asymptotic expansions in the
limit Sc−"U 0, but retaining α of order unity as discussed in the previous section, in
such a way that thermal diffusion and advection remain as the dominant transport
mechanisms, to leading order in the Sc−" expansion analysis.

Equation (3.15) is a second-order ordinary differential equation with variable
coefficients. In the limit of large Schmidt number, in which we are interested, the
resolution of (3.15) becomes a singular perturbation problem and the second derivative
term can be neglected, at the leading algebraic order, everywhere within the viscous
boundary layer except in thin diffusive sublayers where it may become relevant.
Moreover, the solutions of (3.15) exhibit a different qualitative behaviour depending
on the coefficient of the first derivative term, G(η). Note that ®f(η) is the dimensionless
gas velocity component along the direction normal to η. Thus, ®G(η) is equal to the
addition of the normal components of the advective and the thermophoretic velocities
of the dilute species. As can be seen from (3.16), the two contributions to G(η) have a
well-defined sign that remains constant throughout the boundary layer. The Blasius
function, f(η), is positive and tends to zero at the wall, whereas the thermal diffusion
contribution, α(lnΘ)«, can be either positive or negative leading to two different cases.
In the former case, α(lnΘ)«" 0 (namely, a hot stream flowing on a cold surface), the
thermal diffusion flux is directed toward the surface. Adjacent to the rigid wall, a
Brownian sublayer appears where the mass fraction accommodates to the value
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required by the mass boundary condition (3.13). In the latter case, when advection and
thermal diffusion compete, that is for α(lnΘ)«! 0 (a cold stream on a hotter surface),
the thermal diffusion flux is directed away from the rigid body. At some point within
the boundary layer (which we will denote by η

c
), the component of the advective

transport normal to η is exactly balanced by thermal diffusion, and there, the function
G(η) vanishes. Then, Fickian diffusion, the second-derivative term in (3.15), should be
retained in the vicinity of this point where a thin inner sublayer develops. The character
of the solution changes sharply across this point, which in fact corresponds to a
second-order turning point of the differential equation (3.15). Messaoudene & T’ien
(1993) performed a ‘patching’ between the solutions in the different regions but
assuming a vanishing value for the mass fraction in the zone between the internal
sublayer and the wall. However, as it will be seen, in this lower region, exponentially
small terms have to be considered to account for the diffusive leakage of the dilute
species through the inner sublayer, as the incorporation of these small terms is crucial
in the structure of the whole mass boundary layer.

In the limit Sc−"U 0, solutions of (3.15) can be sought in the form

ΨE } (η) exp [Scφ(η)], (3.18)

where the function } admits an expansion of the form } ¯ }
!
}

"
}Sc}

#
}Sc#

O(Sc−$). Substitution of (3.18) in (3.15) leads to a rather general form of the
complete solution (Horn 1899) as the addition of two asymptotic series. To leading
order in each series, the solution can be written as (see for instance Nayfeh 1973,
p. 317 ff., and also Wasow 1965, p. 147)

Ψ¯C
"
exp 0®&

η

η
!

H(ηh )
G(ηh )

dηh 1C
#
G(η)−" exp 0&

η

η
!

H(ηh )
G(ηh )

dηh 1 exp 0®Sc&
η

η
!

G(ηh ) dηh 1 .
(3.19)

The first term corresponds to the Sc-algebraic series resulting for φ«(η)¯ 0, whereas
the second term accounts for the Sc-exponential series coming from φ«(η)¯®G(η),
which are the two independent leading-order solutions of (3.15) in the prescribed form
(3.18). The boundary conditions fix the values of constants C

"
and C

#
.

The next Section is devoted to the case α(lnΘ)«" 0, whereas the study of the case
α(lnΘ)«! 0 will be described in §5.

4. Boundary layers with thermal diffusion transport toward the wall

When the thermal diffusion transport is directed toward the wall (that is when the
term [α(lnΘ)«] is positive) the function G(η) multiplying Ψ« in (3.15) is always positive
and never vanishes. By choosing η

!
¯ 0 in (3.19), the mainstream condition, Ψ(¢)U 1,

leads to

C
"
¯ exp 9&

¢

!

H(η)

G(η)
dη: (4.1)

because the Sc-exponential contribution vanishes for large values of η. However, close
to the wall, this contribution becomes relevant and the boundary condition at the wall,
(3.13), imposes the value of C

#
:

C
#
¯G

w (Ψ eq0Gw

C
S

®11 exp 9&
¢

!

H(η)

G(η)
dη:* , (4.2)
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Konstandopoulos & Rosner (1995b).

where, from (3.16), G
w

is given by

G
w

3G(0)¯α[lnΘ)«]
w

¯
1®Θ

w

Θ
w

α

&
¢

!

θ(η) dη

. (4.3)

Note that because Θ
w

! 1, the value of G
w

ranges between zero and infinity. The
definite integral in the denominator has a numerical value which depends on the fluid
Prandtl number Pr and on the wedge angle β (i.e. on the value of m). In the particular
case of a flat plate (m¯ 0) and air (Pr¯ 0±7) the result is

G
w
(m¯ 0,Pr¯ 0±7)¯ 0±4139α

1®Θ
w

Θ
w

. (4.4)

All the numerical results presented in this paper will correspond to these values of m
and Pr.

Then, the mass fraction on the wall is

Ψ
w

¯Ψ eq
G

w

C
S

exp 9&
¢

!

H(η)

G(η)
dη: (4.5)

and the depositing mass flux on the cold wall, obtained from (3.14), is

J
c
¯G

w
exp 9&

¢

!

H(η)

G(η)
dη: . (4.6)

Numerical evaluations of the deposition flux predicted by (4.6) are depicted in figure 4
for three typical values of the thermophoretic strength parameter, α¯ 0±5, 0±6, and
0±75. The experimental results obtained by Rosner & Kim (1984) are indicated by filled
dots (in their experimental conditions, l}r

!
E 10$, r

"
}r

!
E 3¬10$, and the value αE 0±6

can be estimated from our figure 2). Rosner & Kim (1984) presented their results in
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relative units, by normalizing respect to the deposition rate for Θ
w

¯ 0±7. Thus, to plot
their experimental results in figure 4 we have multiplied them by our theoretical value
for Θ

w
¯ 0±7 (with α¯ 0±6). In a more recent paper, Konstandopoulos & Rosner

(1995b) provided further experimental deposition rate measurements which are
indicated by the filled squares in figure 4. Two features of this figure should be
mentioned. First, the deposition flux being proportional to G

w
, it is a decreasing

function of the wall temperature Θ
w

almost everywhere except for very low wall
temperatures where the thermophoretic deposition reaches a maximum after which, for
even lower temperatures, the flux is dramatically reduced. It vanishes asymptotically in
the limit of very large temperature differences (Θ

w
U 0) because, owing to the

exponential dependence, the thermophoretic flux becomes exponentially small (see
(4.6)). Anyway, this region of very low values of Θ

w
is less interesting because it is not

easily achievable in actual experiments where typical temperature ratios are not lower
than 0±1. Secondly, in the opposite limit of small temperature differences (Θ

w
U 1), the

function H(η) becomes very small and the exponential contribution to the flux takes
values close to unity. So, the limiting value of (4.6) for the thermal diffusion mass flux
to a slightly cold wall vanishes like G

w
:

J
c,lim

¯G
w

when Θ
w

U 1−. (4.7)

These results are valid as long as thermal diffusion is dominant. However, for very
small temperature differences thermal diffusion and Brownian diffusion may become
comparable. Then, the previous analysis does not give an adequate solution and, for
instance, the purely Brownian (non-vanishing) deposition rate is not recovered when
Θ

w
U 1. The analysis of the limit of small temperature differences is performed later, in

§6, to provide the connection between the hot wall and the cold wall descriptions
through the isothermal case.

The previous analysis assumes that all the parameters involved in the evolution
equation and boundary conditions are of order unity and the results do not properly
account for the case of low sticking. The expression (4.6) for the mass flux does not
depend on the sticking coefficient C

S
and does not vanish when a non-sticking wall

condition is imposed (C
S
U 0), as the boundary condition (3.13) requires. Furthermore,

(4.5) shows a divergence of the mass fraction at the wall in this non-sticking limit. In
fact, (3.19) was written under the assumption that the leading terms of both particular
solutions of (3.15) resulting from (3.18) were of the same order in the expanding
parameter Sc−". Thus, this solution cannot account for a vanishing mass flux to the
wall because in that case the contribution of the exponential expansion becomes
increasingly large as the sticking coefficient vanishes (C

#
U¢ when C

S
U 0). This

divergence comes from the fact that the dilute species accumulates near the wall due
to the action of thermal diffusion and, as it cannot deposit on the wall, the normalized
mass fraction increases until a balance with advection is established. Then, the solution
cannot be reduced to just the leading order of each particular solution (3.18), and at
least three terms of the exponential series should be included. This limit of vanishing
values of C

S
will be considered in a future work.

5. Boundary layer with thermal diffusion transport away from the wall

When the thermal diffusion flux is directed away from the rigid surface, the
contribution α(lnΘ)« is negative and the coefficient of Ψ« in equation (3.15), G(η),
vanishes at a well-defined value of the similarity variable η¯ η

c
. This value corresponds

to a second-order regular turning point of (3.15). Under the complete absence of
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F 5. Location of the turning point η
c
vs. rG

w
r obtained from (5.1) for m¯ 0, Pr¯ 0.7 and two

values of the thermophoretic strength α. The lines end at the values of G
w

corresponding to Θ
w
U¢

in (4.4).

Brownian diffusion (the case Sc−"¯ 0), η
c

defines the stagnation point of the dilute
species, and divides the boundary layer into two distinguished zones : an upper zone
above the turning point (η" η

c
) where the dilute species is present and a lower zone

(usually denoted in the literature as the dust free layer) between η
c
and the wall where

this species is absent. However, for non-vanishing (and no matter how small) Brownian
diffusion, the dilute species is able to diffuse across η

c
and an inner sublayer must be

taken into account around η
c

where diffusion becomes comparable to the combined
effects of advection and thermal diffusion. The value of η

c
is implicitly given by the

relation
G(η

c
)3 [ fα(lnΘ)«]η=η

c

¯ 0 (5.1)

which is easily solved for any value of α.
For a flat-plate boundary layer, where G

w
is given by (4.4), typical values of η

c
versus

(®G
w
) are shown in figure 5. The use of G

w
as the independent variable is suggested by

the small-temperature-gradient limit of (5.1) (see later, (5.28)). On the other hand, note
that according to (4.3), the parameter G

w
has a limiting value, equal to ®α( !¢

!
θdη)−",

reached asymptotically in the limit of very large temperature differences (Θ
w

U¢).
This extreme value depends on Pr, m and α, but is independent of the Sc value.
Then, in figure 5 each curve has an end point (indicated by a horizontal bar) which
corresponds to the limiting value of G

w
. In fact, these limit cases provide the maximum

allowed values of η
c
that have been depicted in figure 6 for the corresponding values

of α. They represent the maximum thickness of the dust-free layer or dark zone that can
be achieved for a given value of α. No matter how much the rigid plate is heated, the
dust-free region can only extend over a fraction of the whole thermal boundary layer.

5.1. Outer regions

In these zones where the turning point is excluded (η1 η
c
), the concentration profile

is given by expressions of the type indicated by (3.19). We will use superscript  to
denote the solution in the upper region (η" η

c
) and superscript ® for the lower region

(0% η! η
c
). The subscript c will denote values at η¯ η

c
.
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F 6. Maximum thickness of the dust free region η
c,max

and upper limit value of the parameter
δ, corresponding to extremely large temperature differences (Θ

w
U¢) as a function of the

thermophoretic strength α. Represented values are for m¯ 0 and Pr¯ 0.7.

In the upper region, we take η
!
¯¢ in (3.19). Then, C+

#
must be taken equal to zero

because, as G(η)" 0 in this region, this contribution diverges exponentially in Sc. On
the other hand, the boundary condition at the mainstream (3.12) leads to C+

"
¯ 1.

Thus, (Goren 1977)

Ψ+
out

¯ exp 9 &
¢

η

H(ηh )
G(ηh )

dηh : . (5.2)

It is interesting to note the identity

H(η)3 (1®αPr) f(lnΘ)«®[ fα(lnΘ)«] (lnΘ)«. (5.3)

When this relation is used in (5.2) the contribution of the second term can be integrated
leading to a pre-exponential factor equal to Θ, whereas the first term gives a
contribution in the exponential whose sign depends on the product αPr. If this product
turns out to be larger than unity (and this is a rather unusual case) the integral in (5.2)
would take large and positive values when ηU η

c
and Ψ+

out
would show a divergence

close to the critical point (i.e. there would be a relative accumulation of dilute material
at this position). On the other hand, when αPr is smaller than unity, which corresponds
to the physically interesting case, the integral of (5.2) takes large and negative values
and the dilute-species concentration vanishes in the proximity of the locus η¯ η

c
. More

precisely, around η
c
, and considering the Taylor expansion of G(η),

G(ηU η
c
)¯ (η®η

c
)G !

c
O(η®η

c
)#, (5.4)

the leading-order form of (3.15) is

G !
c
(η®η

c
) (Ψ+

out
)«H

c
Ψ+

out
¯ 0, (5.5)

showing that η¯ η
c
is a regular singular point of this leading-order outer equation. The

solution of (5.5) is
Ψ+

out
(ηU η

c
)EC(η®η

c
)δ, (5.6)
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F 7. Value of the parameter δ (from (5.7), for m¯ 0 and Pr¯ 0.7) vs. rG
w
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the thermophoretic strength. The lines end at the values of G
w

corresponding to Θ
w
U¢ in (4.4).

where C is a constant to be determined below and we have defined the parameter

δ3
®H

c

G !
c

3 9 αf !
c

f #
c
(1®αPr)

®1:−" . (5.7)

As can be seen from this relation, δ is positive for αPr! 1 and conversely δ! 0 for
αPr" 1. Typical values of this parameter for a parallel-plate boundary layer are shown
in figure 7. As for η

c
, the parameter δ also reaches an upper limit value (indicated

by horizontal bars in figure 7) when the temperature differences become very large
(Θ

w
U¢). These maximum values are plotted in figure 6 as a function of the thermal

diffusion strength α, showing that the parameter δ in physical situations is always
positive and smaller than unity.

Thus, let us rewrite the solution (5.2) in the equivalent form

Ψ+
out

¯ 0 η®η
c

η*®η
c

1
δ

exp 9 &
¢

η*

H(η)

G(η)
dη&

η*

η

F(ηh ) dηh : , (5.8)

where η* is any nearby point greater than η
c
and we have introduced the function

F(η)3
H(η)

G(η)


δ

η®η
c

¯
α(lnΘ)§

fα(lnΘ)«


δ

η®η
c

. (5.9)

Thus the exponential term appearing in (5.8) does not contain any singularity
because the function defined by (5.9) has a regular behaviour at η¯ η

c
. In fact, its

expansion around this point is

F(ηE η
c
)¯

H !
c
δG"

c
}2

G !
c

O(η®η
c
). (5.10)

In this way, the main dependence on η has been transferred to the pre-exponential
factor in the expression (5.8), which can be used to compute numerically Ψ+

out
at any

value of η& η
c
.
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Therefore, the inner limit form of this outer solution is given by (5.6) with

C¯ (η*®η
c
)−δ exp 9 &

¢

η*

H(η)

G(η)
dη&

η*

η
c

F(η) dη: . (5.11)

This coefficient depends on the thermophysical properties of the gas mixture and on the
imposed temperature ratio, Θ

w
¯T

w
}T¢. Furthermore, it is independent of the value

chosen for η* by construction.
Within the lower region (0% η! η

c
) we take η

!
¯ 0 in (3.19) and using again the

function F(η) the normalized mass fraction distribution in this lower region can be
written in the form

Ψ−
out

¯C−

" 0ηc
®η

η
c

1
δ

exp 9®&
η

!

F(ηh ) dηh :
C−

# (G(η) 0ηc
®η

η
c

1
δ

exp 9®&
η

!

F(ηh ) dηh :*−" exp 9®&
η

!

ScG(ηh ) dηh : . (5.12)

This equation incorporates both the Sc-algebraic and the Sc-exponential leading-
order contributions in the general solution, (3.19). However, as will be seen, the
boundary condition (3.13) and the matching condition with the inner Brownian
sublayer (5.26), will impose that both terms in (5.12) must be of the same exponentially
small order. These exponentially small terms must be retained to account for the
diffusive mass leakage through the inner region. The analysis by Messaoudene & T’ien
(1993) overlooked these exponentially small terms and considered a vanishing mass
fraction in this lower region, providing an incomplete boundary layer description
which leads to the absence of the mass deposition rate on the plate.

Using (5.12) in the equation for the mass flux to the hot wall, (3.14), gives

J
h
¯C−

"
G

w
. (5.13)

According to this result, the flux to the wall is due completely to the Sc-algebraic
contribution term in (5.12) whereas the Sc-exponential contribution gives no net mass
flux to the wall. The boundary condition at the wall, (3.13), relates both constants C−

"
and C−

#
, leading to

C−

"
¯

Ψ eq®C−

#
}G

w

1®G
w
}C

S

. (5.14)

The behaviour of this lower-region solution, (5.12), in the vicinity of the turning
point is obtained by using the Taylor expansion of G(η) around η

c
, equation (5.4).

Thus, the inner limit form of this solution is

Ψ−
out

(ηU η
c
)ED

"
(η

c
®η)δD

#

exp [®"

#
Sc(η

c
®η)#G !

c
]

(η
c
®η)"+δ

, (5.15)

where

D
"
¯C−

"

exp 9®&
η
c

!

F(η) dη:
ηδ

c

,

D
#
3®C−

#
ηδ

c

exp ( &
η
c

!

[F(η)®ScG(η)] dη*
G !

c

.

5

6

7

8

(5.16)
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Therefore, the mass fraction profile in the two outer regions is solved except for one
constant (either D

"
or D

#
) which remains free at this stage and should be determined

by coupling both outer solutions through the inner one.

5.2. Inner diffusi�e region

To analyse the structure of the inner zone surrounding η
c
(the Brownian sublayer) the

Taylor expansions of G(η) and H(η), around η
c
, should be introduced in (3.15). Then,

it appears that the relative thickness of the inner sublayer is O(Sc−"/#) and the
appropriate stretching variable is

Λ3 (ScG !
c
)"/# (η®η

c
). (5.17)

By using this variable the inner form of (3.15) in the vicinity of η
c
to leading order

becomes

d#Ψ
inn

dΛ#

Λ
dΨ

inn

dΛ
®δΨ

inn
¯ 0 (5.18)

with δ given by (5.7). Equation (5.18) can easily be transformed into the parabolic
cylinder equation by taking eΛ#

/%Ψ
inn

(Λ) as the dependent variable. Then, the general
solution can be written as the following linear combination involving the Whittaker
function U([ ,[ ) (Abramowitz & Stegun 1972, p. 687 ff.) :

Ψ
inn

¯ e−Λ#
/%[E

"
U("

#
δ,Λ)E

#
U("

#
δ,®Λ)], (5.19)

where the constants E
"

and E
#

must be determined by matching with the outer
solutions.

To perform the matching we first note the limit behaviours of solution (5.19) :

Ψ
inn

(ΛU¢)UE
"

e−Λ#
/#

Λ"+
δ
E

#

(2π)"/#

Γ(1δ)
Λδ, (5.20)

Ψ
inn

(ΛU®¢)UE
"

(2π)"/#

Γ(1δ)
(®Λ)δE

#

e−Λ#
/#

(®Λ)"+δ
, (5.21)

where Γ is the usual gamma function.

5.3. Matching conditions

The matching between the inner-region solution and the upper outer solution is
obtained by equating (5.20) and (5.6). Thus, the value of E

#
is determined as

E
#
¯

Γ(1δ)

(2π)"/# (ScG !
c
)δ/#

C (5.22)

with the coefficient C given by (5.11).
On the other hand, the matching with the lower-region solution is obtained by

relating (5.21) with (5.15). This matching provides the relations

E
"
¯

Γ(1δ)

(2π)"/# (ScG !
c
)δ/#

D
"

(5.23)

and
E

#
¯ (ScG !

c
)("+δ)/#D

#
, (5.24)
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to a hot plate (from (5.25), (5.26) for m¯ 0, Pr¯ 0.7, Ψeq ¯ 0 and
C
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U¢) as a function of rG

w
r for two different values of the Schmidt number and α¯ 0.5 (solid lines)

or α¯ 0.75 (broken lines). For Sc¯ 10# both lines become indistinguishable at this scale.

with D
"

and D
#

related to C−

"
and C−

#
by (5.16). Thus, by equating (5.24) with (5.22)

and using the definition (5.16) the result is

C−

#
¯®

(G !
c
)"/#−δ

[(η*®η
c
) η

c
]δ Sc"/#+δ

Γ(1δ)

(2π)"/#
exp ( &

η
c

!

[ScG(η)®F(η)] dη

&
η*

η
c

F(η) dη&
¢

η*

Η(η)

G(η)
dη* . (5.25)

Therefore, the constants E
#

and C−

#
are determined irrespectively of the boundary

condition on the wall just by matching the two outer solutions through the inner
solution.

On the other hand, the boundary condition on the wall determines the remaining
constant C−

"
through its relation with C−

#
given by (5.14). Once the values of the two

coefficients are known, the concentration profile in the lower outer region can be
completely evaluated from (5.12) and the flux to the wall obtained from (5.13).

In the case of a depositing aerosol the flux to the hot wall is given simply by

J
h
(Ψ eqE 0,C

S
U¢)¯®C−

#
. (5.26)

The computation of this particular case in a flat-plate boundary layer leads to the
results depicted in figure 8, where the normalized deposition mass flux J

h
is plotted

versus rG
w
r for two Schmnidt numbers, 10 and 10# (which roughly correspond to large

molecules and submicron particles, respectively). In each case, curves are drawn for
α¯ 0±5 (solid lines) and α¯ 0±75 (dashed lines). For Sc¯ 10# both curves are
indistinguishable on this scale. Thus, the relative influence of the value of α is reduced
as the Schmidt number increases. This means that the uncertainties in the theoretical
evaluation of α will have a minor influence on the prediction of the deposition rates to
hot surfaces for sufficiently large molecules or small particles where Sc takes large
values.

For very large temperature gradients, the depositing mass flux decreases ex-
ponentially to an end value corresponding to the maximum of rG

w
r (see (4.4)). On the
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other hand, (5.26) predicts a maximum in the deposition rate for some intermediate
temperature difference and even a vanishing flux in the limit of small temperature
gradients (G

w
U 0). This result is inconsistent with the fact that even in the absence of

any temperature gradient in the gas, a non-vanishing mass deposition flux produced
by pure Brownian diffusion should still remain. Thus, as is the case when the
thermophoretic transport is directed toward the wall (§4, equation (4.7)), the limit of
small gradients of temperature cannot be simply obtained by taking the limit G

w
U 0

in the previous analysis and deserves a separate study that will be performed in §6.
First, in the next subsection we will treat in detail the limit form reached by the species
concentration distribution and mass deposition flux provided by the previous analysis
for small G

w
.

5.4. The thermophoretic limit of small temperature gradients

When the temperature difference between the wall and the gas stream is small thermal
diffusion transport (which is still assumed much stronger than Brownian diffusion)
becomes a weak effect and the location of η

c
approaches the wall. In this case the

concentration boundary layer structure described previously is notably simplified and
its limit form can be analysed by taking

ε3
r1®Θ

w
r

Θ
w

(5.27)

as a small expansion parameter (ε is defined here with the absolute value in order to
use the same parameter in §6). Recalling the definition of G

w
, (4.3), it turns out that

G
w

is of order ε and η
c
is approximately given by

η
c
E [®2G

w
}f§(0)]"/#. (5.28)

Thus, around and below η
c
, the functions G(η) and H(η) take small values of the order

of ε and ε#, respectively. Also, the parameter δ becomes a small number of the order
of ε$/#,

δE®G
w

η
c

1®αPr

2α
. (5.29)

Note that (5.6) establishes that for small values of δ the region of the upper outer
zone (η" η

c
) where the normalized mass fraction Ψ shows an appreciable change

shrinks around η
c
, becoming of the same order as δ. By decreasing the value of ε this

order may become the same as the order of the inner diffusive zone width, i.e.

(ScG !
c
)−"/#E ε$/#, that is, ε¯O(Sc−#/(), (5.30)

then, both zones coalesce and the leading-order solution in the outer upper zone is
simply Ψ+

out
¯ 1. The constant C defined in (5.11) becomes equal to unity at this order.

The corresponding solution in the inner zone is obtained by taking the limit δU 0 in
the general solution (5.19), noting that in this limit the Whittaker function is related to
the error function, erf (Λ}o2).

On the other hand, the width of the lower outer zone (given by η
c
) is of the order of

ε"/# and so very large compared to the inner zone thickness, ε$/#. Therefore, in this
regime a well-differentiated outer zone still exists between the critical line and the wall.
The limit εU 0 corresponds to vanishing values of δ, F(η) and H(η) in (5.12). Moreover,
this limit in the expression (5.13) for the mass flux to the wall with (5.14) and (5.25)
leads to

J
h,lim

¯®G
w

(π∆)−"/# e−#∆/$®Ψ eq

1®G
w
}C

S

, (5.31)
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F 9. Normalized deposition rate (J
h
Sc#/$) to a hot plate (for m¯ 0, Pr¯ 0.7, Ψeq ¯ 0 and

C
S
U¢) as a function of the parameter ∆ defined by (5.32). Solid line represents J

h,lim
from (5.31)

and the dashed lines accounts for J
h

from (5.25), (5.26) for Sc¯ 10 and Sc¯ 10# with α¯ 0.5.

where we have introduced the positive parameter ∆ defined by (Friedlander et al. 1988)

∆3Sc rG
w
r η

c
(5.32)

which, in this regime, is a large parameter of order ε−#. Thus, (5.31) shows how small
the mass flux becomes in this regime of relatively small gradients of temperature. Note
also that only when C

S
becomes of order ε, does the partial impermeability of the wall

start to be manifested by decreasing the mass flux.
The depositing mass flux (J

h,lim
) predicted by (5.31) for an aerosol (Ψ eqE 0,C

S
U¢)

in a parallel-plate boundary layer is shown by the solid line in figure 9. The
corresponding results given by the general expression for J

h
, (5.26), with α¯ 0±5 are

also plotted here (broken lines) in terms of the parameter ∆ for two different Schmidt
numbers. The comparison shows that J

h,lim
gives a very accurate prediction when Sc

is around 10# or larger. However, for smaller values of the Schmidt number (ScE 10)
the limit expression (5.31) overpredicts the deposition flux and J

h,lim
" J

h
.

The validity of the previous results is restricted to large values of ∆ (of order ε−#).
Then, the region near ∆¯ 0 in figure 9 is not correctly described, and a different
analysis accounting for a Brownian diffusion of the same order as (or even larger than)
thermophoresis is required in this range of very small temperature gradients. The study
of this case is carried out in the next Section.

6. Large-Schmidt-number limit of Brownian deposition modified by a
small thermophoresis

In the limit of vanishing temperature differences between the plate and the oncoming
gas the thermophoretic mass transport has to become negligible. Therefore, the purely
Brownian deposition case should be recovered as the limit of no thermophoresis is
approached. However, for cold (respectively hot) walls, the limit of the deposition flux
provided by J

c
in (4.7) (respectively J

h
in (5.31)) just tends to zero when Θ

w
tends to one,

without accounting for any Brownian flux. The particular case of small temperature
differences can be solved by taking this limit directly in the governing equation (3.15)
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instead of following the general procedure indicated at the end of §3 (see (3.18)). The
analysis will be valid for thermophoretic transport directed towards the wall (G

w
" 0)

as well as for thermophoretic transport directed away from the wall (G
w

! 0) in the
limit rG

w
r' 1.

We can use again the parameter ε defined in (5.27) as a small expansion parameter.
It is easy to see that the function H(η) takes values always smaller than the function
G(η). Therefore H(η) can be neglected in (3.15) to leading order in ε and then the
solution of (3.15) can be written in terms of a quadrature for any value of the Schmidt
number. However, in the case of small temperature differences, but still large Schmidt
numbers, the influence of both thermophoresis and Brownian diffusion becomes
restricted to a very thin region around the plate. The three remaining terms in (3.15)
at leading order are the advective and the thermophoretic contributions to G(η)
evaluated near the wall, and the Brownian diffusion term (Ψ§}Sc). The condition that
these three terms are of the same order imposes a relative ordering between ε and Sc :

ε¯O(Sc−#/$) (6.1)

leading to the rescaled similarity variable

ξ3 0f§(0)

2rG
w
r1

"/#

η. (6.2)

With this rescaling, (3.15) to leading order becomes

d#Ψ

dξ#
∆(ξ#³1)

dΨ

dξ
¯ 0. (6.3)

The positive sign corresponds to G
w

" 0 (for a relatively cold wall) and the negative
sign accounts for the case G

w
! 0 (a slightly hotter wall). The latter case was analysed

by Friedlander et al. (1988) with the condition of vanishing mass fraction at the wall.
Here, we will extend their results to more general boundary conditions and also include
the case when G

w
" 0.

In (6.3) we have used the parameter

∆3 0 2

f§(0)1
"/#

ScrG
w
r$/#. (6.4)

For negative values of G
w

this definition of ∆ agrees with the previous definition (5.32),
although in the actual scaling (see (6.1)) ∆ is a parameter of order unity. It is
worthwhile noticing that for negative values of G

w
(6.3) is in fact the limit of the inner-

region equation (5.18) for very small temperature differences. Equation (6.3) is now
written in terms of the variable ξ, which is related to the inner variable Λ by

Λ¯ (2∆)"/# (ξ®1). (6.5)

In the new variable ξ the origin is shifted to the wall and the turning point is located
at ξ

c
¯ 1. In fact, what happens in this limit of small and negative values of G

w
is that

the lower outer region is embedded in the inner diffusive region because their respective
thicknesses become of the same order ε"/#. Then, only two distinguished regions
remain: the upper outer zone covering most of the boundary layer, where the mass
fraction is constant and equal to the mainstream value, and the thin inner diffusive
region (now located just on the wall), where the mass fraction changes from the
mainstream value to the value required by the boundary condition on the wall. In this
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limit δ is negligible and in the Taylor expansion of the function G(η) around η
c
the two

first terms are of the same order and should be retained, leading to

G(ηU η
c
)¯G !

c
(η®η

c
)"

#
G"

c
(η®η

c
)#o(ε) (6.6)

as G !
c
is of order ε"/# and G"

c
is of order unity. Under these circumstances the physical

characteristics of both cases G
w

" 0 and G
w

! 0 as well as the corresponding equations
and boundary conditions become analogous: only two differentiated regions exist and
the outer region is the same in both cases. Then a unified mathematical analysis can be
performed, the only difference being the plus or minus sign in (6.3) governing the mass
distribution in the inner (near-wall) region.

In general the solution of (6.3) which satisfies the mainstream condition (3.12) is

Ψ(ξ)¯Ψ(0)[1®Ψ(0)]
I³(∆, ξ)

I³(∆,¢)
, (6.7)

where we have introduced the integral function

I³(∆, ξ)3&
ξ

!

exp [®∆("
$
ξh $³ξh )] dξh . (6.8)

Here, the subscript  stands for the case G
w

" 0 and the subscript ® stands for the
opposite case when G

w
! 0. The boundary condition at the plate, (3.13), fixes the value

of Ψ(0), resulting in

Ψ(0)¯
Ψ eqrG

w
r}C

S
∆I³(∆,¢)

1®(rG
w
r}C

S
) [³1®1}∆I³(∆,¢)]

. (6.9)

Although rG
w
r is here a small parameter of order ε (i.e. of order Sc−#/$) its contribution

has been retained to account for the limit case of low sticking C
S
¯O(ε) when this

contribution becomes of order unity.
In the case of large Schmidt number with Brownian diffusion modified by a small

thermophoretic contribution, the deposition mass flux to the wall J
BT

from (3.14) is

J
BT

¯ rG
w
r
[1}∆I³(∆,¢)]Ψ eq[³1®1}∆I³(∆,¢)]

1®(rG
w
r}C

S
) [³1®1}∆I³(∆,¢)]

. (6.10)

For perfect sticking (C
S
U¢) and Ψ eq¯ 0, (6.9) leads to a vanishing mass fraction

on the wall, Ψ(0)¯ 0. Whenever G
w

! 0 the solution (6.7) and the mass flux given by
(6.10) specialize to the results found by Friedlander et al. (1988).

We study now the different limits of (6.10) in the cases ∆U 0 (Brownian-dominated
regime) and ∆U¢ (thermophoretically dominated regime). For vanishing values of ∆
(that is, when Θ

w
is close to unity) the following common limit behaviour is easily

obtained from (6.8) :
∆I³(∆,¢)E 3"/$Γ(4}3)∆#/$, (6.11)

which is valid for positive as well as for negative G
w

values. When this result is used
in (6.10) the limiting expression for Brownian deposition flux in the absence of
thermophoresis (J

B
) is obtained:

J
B

¯Sc−#/$
1®Ψ eq

[6}f§(0)]"/$Γ(%
$
)1}(C

S
Sc#/$)

, (6.12)

which recovers the flux in the pure Brownian regime for large Schmidt numbers.
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F 10. Normalized deposition rate (J Sc#/$) onto a flat plate (for m¯ 0, Pr¯ 0.7, Ψeq ¯ 0,
C

S
U¢ and α¯ 0.5) as a function of the parameter ∆ defined by (6.4). Positive (respectively negative)

values of G
w

correspond to a cold (respectively hot) plate.

For large values of the parameter ∆, the asymptotic behaviour of I³ leads to (see,
for instance, Bleistein & Handelsman 1986, pp. 81 and 181)

∆I
+
(∆,¢)E 1®2}∆# when ∆( 1, (6.13)

∆I
−
(∆,¢)E (π∆)"/# e#∆/$ when ∆( 1. (6.14)

Therefore, the mass deposition rate given by (6.10) recovers both limits : the deposition
rate on a cold surface J

c,lim
provided by (4.7) and the deposition rate on a hot wall

J
h,lim

given by (5.31). These results show that there exists a perfect matching between
the regime of Brownian-diffusion-dominated deposition, (6.10), and the thermo-
phoretically dominated regimes studied in §§4 and 5.

The prediction of this Brownian case with a small temperature gradient J
BT

, (6.10),
is depicted by the solid line in figure 10 for a depositing aerosol (Ψ eq¯ 0,C

S
U¢). In

this regime the deposition rate shows a strong dependence on the prevailing thermal
gradients. For large Schmidt numbers, a value of ∆ of order unity can be achieved with
very small temperature differences (as can be seen from (6.4)). Then, the influence of
thermophoresis leads to substantially different deposition rates from the purely
Brownian flux. The results of figures 4 and 9 are also plotted again for comparison here
in terms of the rescaled flux and temperature gradient. These latter results correspond
to J

c
from (4.6) and J

h
from (5.26), respectively, by assuming order-unity values of G

w

and are represented for α¯ 0±5 in figure 10: the dashed line with the stars is for the case
in which Sc¯ 10# and the dashed line with the solid circles corresponds to Sc¯ 10.
The asymptotic limits for small absolute values of G

w
(J

c,lim
from (4.7) and J

h,lim
from

(5.31)) are also depicted by the dashed lines in figure 10 although, in the case of
G

w
! 0, J

h,lim
is indistinguishable from J

h
for Sc¯ 10#. It is noteworthy that for large

values of ∆ the solid line merges with these two broken limit lines complying with the
asymptotic behaviour J

c,lim
and J

h,lim
provided by (4.7) and (5.31), respectively. Thus,

it is clear from this picture that the difference between the depositing flux predicted by
both analyses becomes important when ∆ is small as all the broken lines are different
from the purely Brownian deposition rate (J

B
) and provide a vanishing flux in
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the absence of thermal gradients. On the other hand, when ∆ is large the small-
temperature-gradient result J

BT
(represented by the solid line) overpredicts the

depositing flux, which in this case is correctly described by J
c
, (4.6), or J

h
, (5.26). These

results will be used in the next Section to construct a composite expression for the
depositing mass flux (J ) valid in the whole range of temperature gradients.

7. Discussion of results and conclusions

A general analysis of the thermophoretic mass transport across self-similar thermal
boundary layers has been performed considering a small Brownian diffusion (that is,
in the large-Schmidt-number limit). The study describes the behaviour of a species very
diluted in a carrier gas and applies to suspended corpuscles with radii typically in the
range 10−'–10−* m at 1 atm (from submicron particles to giant molecules or molecular
aggregates). For this range of sizes, the Schmidt number Sc takes large values whereas
the thermophoretic strength factor α becomes of order unity (see figures 1 and 2).
Under these circumstances, the presence of large temperature differences in the gas
induces a diffusive mass flux (the thermophoretic flux, directed down the temperature
gradient) which overwhelms the pure Brownian diffusive transport (directed down the
concentration gradient). Thus, for polluted gases containing particles or molecular
aggregates and flowing non-isothermally over solid objects (i.e. hot combustion gases
on heat exchanger surfaces or room-temperature gases on externally heated bodies in
chemical vapour deposition processes) thermophoresis is the main diffusive mass
transport within the thermal boundary layers near the walls. Nevertheless, Brownian
diffusion cannot be completely neglected, being responsible for the accommodation of
the concentration gradient at the rigid surfaces to satisfy the boundary conditions, and
also playing a crucial role at locations where thermophoresis is counterbalanced by
advection.

The case of two-dimensional and self-similar laminar boundary layers on cold or hot
solid wedges (see figure 3) has been considered as a model problem. Expressions for the
mass deposition rate and concentration profiles have been provided in terms of the
external controlling parameters : the relative wall-to-gas temperature (Θ

w
¯T

w
}T¢), of

the wedge angle (β), and of the parameters characterizing the thermophysical
properties of the gas mixture: thermophoretic strength (α), Schmidt (Sc) and Prandtl
(Pr) numbers, the normalized equilibrium mass fraction on the deposit (Ψ eq) and a
phenomenological sticking coefficient (C

S
). Also, the relevant groupings of these

parameters have been identified in the different regimes so as to simplify the theoretical
description and the correlation of experimental results. Numerical computations were
made for a parallel flat-plate boundary layer (m¯β¯ 0) by setting Pr¯ 0±7 (a typical
value for air), Ψ eq¯ 0,C

S
U¢ and two different representative values of α (0±5 and

0±75) and Sc (10 and 10#), although from the formula provided deposition rates and
concentration profiles can be obtained for any other value of the parameters. The main
results are summarized below.

For cold bodies immersed in a hot gas stream (§4) thermophoresis induces a flux of
the dilute species directed towards the body surface. For a non-vanishing sticking
coefficient C

S
this flux across the thermal boundary layer leads to a deposition rate to

the surface J
c
provided by (4.6). Characteristic values of the dimensionless deposition

rate J
c

were depicted in figure 4 and compared with the available experimental
measurements.

For hot solid bodies in a relatively colder gas, thermophoresis pushes the suspended
particles away from the body surface, giving birth to the so-called dust-free region
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F 11. Normalized deposition rate (J Sc#/$) to a flat plate (for m¯ 0, Pr¯ 0.7, Ψeq ¯ 0 and
C

S
U¢) as a function of the parameter ∆ defined by (6.4). Solid line is for J

BT
, (6.10), and dashed lines

are the composite values (7.1a, b) for Sc¯ 10 and Sc¯ 10# with α¯ 0.5.

around the body where the dilute material is almost absent. However, Brownian
diffusion produces a small leakage of the material throughout this region and induces
a non-vanishing deposition rate to the solid surface (J

h
). This case was analysed in §5.

In the general case, the boundary layer was divided in three well-differentiated regions:
an upper region, between the boundary layer outer edge and the border of the dust-free
zone (whose location is implicitly given by (5.1)) where Brownian diffusion plays no
role ; a lower region (the dust-free zone), where exponentially small terms should be
included to account for the previously mentioned diffusive leakage; and an intermediate
inner region around a turning point, which connects the two previous zones. In this
inner region, Brownian diffusion should be considered to leading order, because
thermophoretic and advective fluxes are opposed and their components normal to the
similarity variable exactly balance each other at the turning point. The proper
matching between the solutions in the three regions leads to the mass fraction
distribution of the dilute species within the boundary layer and to the deposition rate
to the wall J

h
. Characteristic numerical results for the deposition rate predicted by

(5.25) and (5.26) were depicted in figure 8. The limiting behaviour for small
temperature differences (but such that thermophoresis still overwhelms Brownian
diffusion) J

h,lim
is given by the much more simple and analytical equation (5.31) and

was represented in figure 9. The comparison between the results obtained from both
formulae shows that J

h,lim
gives an accurate prediction of the deposition rate when the

Schmidt number Sc is around 10# or larger. However, for smaller values of the Schmidt
number (ScE 10) J

h,lim
from (5.31) overpredicts the deposition flux.

In both cases (hot or cold surfaces), in the limit when the temperature differences
between the wall and mainstream conditions are so small that Brownian diffusion
becomes a leading-order diffusive transport mechanism, the analyses break down and
incorrectly give vanishing deposition rates. The distinguished limit of very small
temperature differences was studied in §6, providing the physically correct link between
the hot and cold wall cases (see figure 10). The evaluation of the different limits
together with the graphical representation in figure 10 suggest that the deposition rate
for any ordering of the temperature difference in the Sc−"-expansion may be computed



Mass transfer in laminar boundary layers 403

by using a composite relation which adequately combines the results obtained in the
different regimes. The composite deposition rate may be obtained by adding to the
general formulae the expression obtained in the Brownian limit of very small
temperature gradients (J

BT
) and subtracting their common part. That is, for cold walls

J¯ J
c
J

BT
®J

c,lim
, (7.1a)

where J
c
is given by (4.6), J

BT
by (6.10), and J

c,lim
by (4.7).

On the other hand, for hot walls

J¯ J
h
J

BT
®J

h,lim
(7.1b)

with J
h

given by (5.25), (5.26), J
BT

by (6.10), and J
h,lim

by (5.31).
The composite solution (7.1) is represented by the dashed lines in figure 11, for two

different Schmidt numbers, Sc¯ 10 and 10#. Also in this figure the deposition
predicted by the Brownian limit of very small temperature differences J

BT
, (6.10), is

plotted by a solid line. It seems that the range of validity of J
BT

enlarges as the Schmidt
number increases. This is just an impression due to the selection of scales in the figure
as Sc enters in the definition of ∆, and large values of ∆ are easily obtained as Sc is
larger.

Let us summarize the results in a useful recipe-like form for guiding experimental
procedures for a condensing aerosol (C

S
U¢,ΨeqE 0). The wall temperature is

related to ∆ by

Θ
w

¯

A

B

1³
&

¢

!

θdη

α
("
#
f§(0))"/$ 0∆

Sc1
#/$

C

D

−"

, (7.2)

where the plus (respectively minus) sign corresponds to a cold (respectively hot) plate.
For cold plates, figure 10 shows that J

c
(given by (4.6)) provides good approximate

values of the deposition rate to the cold surface only when ∆ is sufficiently large (of the
order of 10 or larger). For the parallel-plate case, with ∆¯ 10, (7.2) leads to the values
T
w

E 0±25T¢ and T
w

E 0±61T¢ for Sc¯ 10 and Sc¯ 10#, respectively. These T
w

values
are estimations of the maximum wall temperatures for which (4.6) can be properly
used. For even larger wall temperatures the composite relation (7.1) should be used
because the Brownian contribution makes J

BT
important. Moreover, J

BT
becomes

dominant when the temperature differences are reduced and ∆ is below about 0±5. For
this ∆ value, (7.2) leads to T

w
E 0±71T¢ and T

w
E 0±92T¢ for Sc¯ 10 and Sc¯ 10#,

respectively. Then, when T
w

takes on even larger values (closer to T¢) J
BT

(provided
by (6.10)) is enough to accurately predict the deposition flux. For instance, in the case
of a stream of hot gases at 1000 K carrying small particles with Sc¯ 10# or larger, (4.7)
holds for wall temperatures lower than about 600 K, whereas (6.10) works for wall
temperatures larger than 900 K. Between both limits (a bandwidth of 300 K) the whole
composite flux expression (7.1a) has to be used.

In the case of deposition to hot plates (7.2) shows clearly that for each value of the
Schmidt number there is a finite extreme value of ∆ (when the term within the bracket
vanishes), which corresponds to the limit of infinitely large wall temperatures. For the
parallel-plate case and Sc¯ 10 this limit value of ∆ is close to 2. Figure 10 shows that
for Sc¯ 10 the composite flux expression (7.1b) has to be used for almost any wall
temperature no matter how large it is. Only when ∆ becomes lower than 0±5 (that is,
for T

w
! 1±68T¢) does J

BT
correctly predict the deposition flux, while, for Sc¯ 10# or

larger J
BT

can be used to get the flux for any value of ∆ with great accuracy. This
excellent capability of formula (6.10) to predict the mass deposition for arbitrary values
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of ∆ was already noted by Friedlander et al. (1988) when they compared this prediction
with the result of a direct numerical integration of the governing equations performed
by Go$ koglu & Rosner (1986a). The reason for the wide validty of the approximation
can be understood from the value of η

c
represented in figure 5. Even for large

temperature differences the turning point (the dark-region border) is located near the
hot wall. In this near-wall region the Blasius function is well approximated by the first
term in the Taylor expansion (around η¯ 0), which coincides with the approximation
taken in the Brownian limit with low temperature differences (§6). The existence of the
upper limit for the dark region border (η

c,max
in figure 6) is another significant result

of the present analysis.
Attempts have been made to compare our theoretical predictions with the available

experimental data. The deposition study of particles on cold surfaces by Rosner & Kim
(1984) and the more recent results by Konstandopoulos & Rosner (1995b) were
compared with our theoretical predictions in figure 4. Moreover, Talbot et al. (1980)
provided some measurements of the dust-free layer thickness observed in an
aluminium-oxide-particle seeded gas stream on a heated plate. They found that almost
independently of the plate temperature, the locus of the particle-free layer boundary
was nicely fitted by the value of the similarity variable for which u}u¢ ¯ 0±5. This
location corresponds to η

c
E 1±1 approximately. The comparison with the theoretical

predictions shown in figure 5 leads to 0±83! η
c
! 0±92 (for α¯ 0±5) or 1±05! η

c
! 1±15

(for α¯ 0±75). The agreement is very good in this latter case, which means that
probably the seed particles used in the experiment had a thermophoretic strength
parameter close to 0±75 (i.e. the diffuse collision fraction between the carrier gas
molecules and the seed particles was close to zero, aE 0). The dark zone observed in
a seeded diffusion flame by Gomez & Rosner (1993) constitutes a related experiment
which provides some insights not only into the thickness of the dust-free layer but also
into the diffusive inner zone, which agree with the values suggested by the present
analysis.

Thus, we have discussed the importance of thermal diffusion in the distribution and
deposition rate of materials carried by gas streams on solid obstacles. A first extension
of this study will consist in the incorporation of the slight inertial effects that should
modify the behaviour of particles in the micron range, where thermophoresis still
remains dominant. These inertial effects and some other extensions such as the
evolution in the shape, porosity, surface roughness or thermal properties of the solid
deposit induced by the material being deposited will be the subject of follow-on studies.
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Appendix. Thermal diffusion factor α
T

of small particles from the
molecular regime to the near-continuum limit

At the leading order of the kinetic theory of gases (Ferziger & Kaper 1972, p. 225),
the thermal diffusion factor α

T
of a dilute trace species in a carrier gas is

[α
T
]
KT

¯ (6C*®5)
$

#
Sc(m

"
}m

!
) (15m

"
}m

!
8A*®15)®5(m

"
}m

!
1)

30(m
"
}m

!
)#16A*m

"
}m

!
25®12B*

. (A 1)

In (A 1), m
!
and m

"
are the molecular mass of the carrier gas and of the dilute species,

respectively and Sc is the Schmidt number of the mixture. The coefficients A*, B* and
C* depend on the nature of the intermolecular potentials and are equal to unity in the
special case of hard spheres undergoing elastic collisions.

Equation (A 1) leads to two different limit values in the opposite cases of light and
heavy dilute species ; the corresponding limiting behaviours are

m
"

m
!

U 0, [α
T
]
KT

U®(6C*®5)
5

25®12B*
, (A 2)

m
"

m
!

U¢, [α
T
]
KT

U (6C*®5) $
%
Sc. (A 3)

For hard spheres and elastic collisions these expressions reduce to ® &

"$
and $

%
Sc,

respectively.
When the dilute species is the massive one the binary diffusion coefficient D becomes

very small and the Schmidt number Sc diverges in that limit. Then, (A 3) establishes
that the thermal diffusion factor diverges too, but in such a way that the ratio α3α

T
}Sc

remains of order unity. This limit of a very heavy species diluted in a light carrier gas
is known as the dusty gas or quasi-Lorentzian gas model (Mason 1957; Mason &
Chapman 1962). In this particular case the calculations have been carried through for
hard spheres, accounting even for the inelastic collisions, by Monchick, Yun & Mason
(1963). They found

[6C*®5]
DG

¯ (1aπ}8)−", (A 4)

where a is the fraction of the carrier gas molecules that rebound diffusely from the dust
particle. Subscript DG stands for this dusty gas limit. The above result agrees with
Waldmann’s (1961) calculations who adopted the different procedure of adding up all
the impulses transferred to a dust particle by the impinging gas molecules (Epstein
1924; Garcı!a-Ybarra & Rosner 1989). Note that in this limit [α

T
]
DG

does not really
depend on a (fraction of inelastic collisions) because the Schmidt number is also
affected by exactly the same factor through the diffusion coefficient (Epstein 1924;
Garcı!a-Ybarra & Rosner 1989), which is given by

[D]
DG

¯ (1aπ}8)−" [D]
elastic

. (A 5)

Nevertheless, the thermophoretic force proportional to the product α
T

D is diminished
by the factor (1aπ}8)−" with respect to the case without inelastic collisions.

This dusty gas model corresponds to the large-molecular-size limit of a dilute species
in the kinetic theory approach (A 3) and must also coincide with the limit of small
particles in a gas, in the transition region between the free molecule and the near-
continuum regimes (creeping flow). Although a complete theory is not available in this
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range of Knudsen numbers we can use the interpolation formulae proposed by Talbot
et al. (1980) from the near-continuum theory,

9αT

Sc:
NC

¯ 2Q
s

(λ
g
}λ

p
Q

t
l}R) [1(l}R) (AB e−QR/l)]

(13Q
m

l}R) (12λ
g
}λ

p
2Q

t
l}R)

, (A 6)

where the subscript NC refers to the near continuum limit, λ
g
and λ

p
are the thermal

conductivities of the carrier gas and of the particle, respectively, R is the particle radius,
l is the carrier-gas mean free path, and the constants Q

s
, Q

t
and Q

m
as well as A, B and

Q are coefficients which depend on the nature of the particle–gas molecule collisions.
Thus, if we impose

lim
l/RU¢

9αT

Sc:
NC

U 9αT

Sc:
DG

(A 7)

we get the relation

Q
s
(AB)

3Q
m

¯
3

4(1aπ}8)
. (A 8)

On the other hand, if the same requirement is imposed on the diffusion coefficient,

lim
l/RU¢

[D]
NC

U [D]
DG

(A 9)

by using the Millikan formula (Millikan 1923) for [D]
NC

the following relation is
obtained:

AB¯
45π

64(1aπ}8)
. (A 10)

When (A 10) is used in (A 8), we arrive at

Q
s

Q
m

¯
16

5π
. (A 11)

This result and that of (A 10) are in close agreement with the results from theoretical
analyses (AB¯ 1±58 for a¯ 1,Q

s
¯ 1±17,Q

m
¯ 1±14, see the summary in Talbot et

al. 1980).
Then, both the kinetic theory result (A 1) and the interpolation formulae (A 6) with

the constraints imposed by (A 10) and (A 11) contain the same description of the dusty
gas model in the overlapping region corresponding to intermediate Knudsen numbers.
The agreement allows a formal composite expression to be written which is valid in the
whole range of Knudsen numbers, as

α3
α
T

Sc
¯ 9αT

Sc:
KT

9αT

Sc:
NC

®9αT

Sc:
DG

. (A 12)

Unfortunately, the practical use of (A 12) is limited because the coefficients A*, B*
and C* appearing in [α

T
}Sc]

KT
, (A 1), are not known when inelastic collisions are

involved. Nevertheless, it can be used to get accurate estimates of the thermal diffusion
strength (α) in dilute gaseous binary mixtures when the typical size of the individual
constituents of the dilute component ranges from the molecular size to particles (see
§2).
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